MAT	TH 1010 Tutorial Nov. 12th
(Eng	lish II)
0	Presenter: WANG, Yizi
	Email: yzwang@math.cuhk.edu.hk
Sche	dule:
	-6:05 Tutorial presentation
	(4 Questions will be cliscussed)
6:05-	-6:15 Q & A
	(Hosted by: YI, Tianhan)
D	
Remar	
- You	. can visit yzwang. xyz or Blackboard
to d	can visit yzwang. xyz or Blackboard bounload the tutorial notes.
- Ma	ath Gym (Faculty TA Q&A Centre)
is m	ow open. Please visit mathgym math cuhk edu.hk
307 77	ore information.

1. Please answer the following questions about the function

$$f(x) = -\frac{2x^2}{x^2 - 4}.$$

(a) Calculate the first derivative of f. Find the critical numbers of f, where it is increasing and decreasing, and its local extrema.

ing and decreasing, and its local extrema.

$$f'(x) = \frac{1b^{x}}{(x^{2}+y)^{2}}$$
Critical numbers $x = 0$
Union of the intervals where $f(x)$ is increasing $(-\infty, -2)$ U(2, $+\infty$)
Union of the intervals where $f(x)$ is decreasing $(-\infty, -2)$ U(-2, 0]

Local maxima $x = \frac{N0NE}{Local minima}$
Local minima $x = 0$

$$f(x) = -\frac{4x(x^{2}-4)-2x^{2}\cdot2x}{(x^{2}-4)^{2}}$$

$$= \frac{16x}{(x^{2}-4)^{2}}$$

$$= \frac{16x}{(x^{2}-4)^{2}}$$

(b) Find the following left- and right-hand limits at the vertical asymptote
$$x = -2$$
.

$$f(x) = -\frac{2x^2}{x^2 - 4} = -\frac{2x^2}{(x+2)(x-2)} = \frac{-2x^2}{x-2} \cdot \frac{1}{x+2} & \lim_{x \to -2^+} \frac{-2x^2}{x-2} = \frac{-2 \cdot 4}{x-2} = 2 > 0$$

$$\lim_{x \to -2^-} -\frac{2x^2}{x^2 - 4} = -\infty \quad \lim_{x \to -2^+} -\frac{2x^2}{x^2 - 4} = \pm \infty$$

Hence
$$\lim_{x\to -2^-} f(x) = -\infty$$
 $\lim_{x\to -2^+} f(x) = +\infty$
Find the following limits at infinity to determine any horizontal

Find the following limits at infinity to determine any horizontal asymptotes.

$$\lim_{x \to -\infty} -\frac{2x^2}{x^2 - 4} = \underline{-2} \qquad \lim_{x \to +\infty} -\frac{2x^2}{x^2 - 4} = \underline{-2}$$

$$f(x) = -\frac{2}{1 - \frac{4}{x^2}}$$
Hence
$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = -2$$

If 470,

X = \ 44 4+2

$$f'(x) = \frac{1bx}{(x^2 + 4)^2}$$

(c) Calculate the second derivative of f. Find where f is concave up, concave down, and has inflection points.

 $f''(x) = \frac{-16(2x^{2}+4)}{(x^{2}-4)^{3}}$ Union of the intervals where f(x) is concave up (-2, 2)Union of the intervals where f(x) is concave down (-2, 2) $(2+\infty)$ Inflection points $x = \frac{NoNE}{\int''(x)} = 16\left[\frac{(x^2-4)^2 - x \cdot 2(x^2-4) \cdot 2x}{(x^2-4)^4}\right]$ $f''(x) > 0 \quad \text{if} \quad x^2 < 4$ $f''(x) < 0 \quad \text{if} \quad x^2 > 4$ $= 16 \left[\frac{x^2 - 4 - 4x^2}{(x^2 - 4)^3} \right] = -16 \cdot \frac{3x^2 + 4}{(x^2 - 4)^3}$

(d) The function f is even/odd because f(x) = f(-x) for all x in the domain of f, and therefore its graph is symmetric about the f(x) = f(-x) for all f(x) = f(-x).

$$f(x) = -\frac{2x^2}{x^2-4} = f(-x)$$

(e) Answer the following questions about the function f and its graph.

The domain of f is the set (in interval notation) $(-\infty, -2) \cup (-2, 2) \cup (-2$

The range of f is the set (in <u>interval notation</u>) $(-\infty, -2) \cup [0, +\infty)$

y-intercept y=0

x-intercepts x = 0

Let f(x) = y $(y+2) x^2 - 4y = 0$ $-\frac{2x^2}{x^2-4} = y$ $If_{-2 \le y < 0} = x \text{ satisfies (*)}$

 $-2\chi^2 = y(\chi^2 - 4)$ If y < -2 $\chi = \sqrt{\frac{4y}{3}}$ (f) Sketch a graph of the function f without having a graphing calculator do it for you. Plot the y-intercept and the x-intercepts, if they are known. Draw dashed lines for

2. Suppose that

$$f(x) = (x-1)^2 \ln(x-1), \quad x > 1.$$

(A) List all the critical values of f(x). Note: If there are no critical values, enter 'NONE'.

- (B) Use interval notation to indicate where f(x) is increasing. Increasing:
- (C) Use interval notation to indicate where f(x) is decreasing. Decreasing:

- (D) List the x values of all local maxima of f(x). x values of local maximums = $\sqrt{y_0} \sqrt{E}$
- (E) List the x values of all local minima of f(x). x values of local minimums = x
- (F) Use interval notation to indicate where f(x) is concave up. Concave up: $(e^{-\frac{x}{2}} + 1, +\infty)$
- (G) Use interval notation to indicate where f(x) is concave down. Concave down:

$$f''(x) = \frac{d}{dx}(x-1) \left[2\ln(x-1) + 4 \right]$$

$$= 2\ln(x-1) + 4 + (x-1) \cdot \frac{2}{x-1}$$

$$= 2\ln(x-1) + 3$$

$$f'(x) = 0 \iff e^{2\ln(x-1)+3} = 1$$

$$(x-1)^{2} \cdot e^{3} = 1$$

$$x = e^{-\frac{3}{2}} + 1$$

3. Compute
$$\frac{1}{2}$$
 $\frac{e^{2x} - e^{-2x}}{2\sin x} = \frac{1}{2\sin x}$

M1:

$$\frac{1}{1} = \frac{e^{2x} - e^{-2x}}{2\sin x} = \frac{1}{2\sin x}$$

$$\frac{1}{1} = \frac{1}{2\sin x} = \frac{1}{2\cos x}$$

$$\frac{1}{1} = \frac{1}{2\cos x} = \frac{1}{2\cos x}$$

$$\frac{1}{1} = \frac{1}{2\sin x}$$

$$\frac{1}{1} = \frac{1}{2\cos x}$$

$$\frac{1}{1} = \frac$$

= 2

4. Use L'Hôpital's Rule (possibly more than once) to evaluate the following limit $\lim_{t\to 0} \sin(t) \ln(t) = \underline{\qquad}$

MI:
$$\lim_{t \to 0} \frac{\ln(t)}{\frac{1}{\sin(t)}} \stackrel{(H)}{=} \lim_{t \to 0} \frac{\frac{1}{t}}{\frac{-\cos(t)}{(\sin(t))^2}}$$

$$= \lim_{t \to 0} \frac{(\sin(t))^2}{-t\cos(t)} \stackrel{(\sin(t))^2}{=} \lim_{t \to 0} \frac{\sin(t)}{t} \stackrel{\sin(t)}{=} \lim_{t \to 0} \frac{\sin(t)}{-\cos(t)}$$

$$\stackrel{(H)}{=} \lim_{t \to 0} \frac{2\sin(t)\cos(t)}{-\cos(t) + t\sin(t)}$$

$$M2$$
: " $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ "

Hence
$$Sint Int = t \cdot In(t) \cdot \frac{Sin(t)}{t}$$

 $\lim_{t \to 0} t \cdot Int = \lim_{x \to +\infty} \frac{1}{x} \cdot In(\frac{1}{x})$
 $= \lim_{x \to +\infty} \frac{In(x)}{x}$

$$\lim_{t\to 0} \sin t \cdot \ln(t) = \left(\lim_{t\to 0} t \cdot \ln(t)\right) \cdot \left(\lim_{t\to 0} \frac{\sin(t)}{t}\right) = 0$$